http://dx.doi.org/10.12702/VIII.SimposFloresta.2014.202-619-2

Estimativa da riqueza de Angiospermas em função das famílias mais expressivas na flora brasileira

Pedro G. C. Lima¹, Josinaldo A. da Silva¹, Ana L. P. Feliciano¹

¹Universidade Federal Rural de Pernambuco (gleciolima@gmail.com; aldoalves37@hotmail.com; licia@dcfl.ufrpe.br)

Resumo: A identificação de padrões na flora de uma região é grande interesse das ciências biológicas. O objetivo deste trabalho foi ajustar três modelos de regressão para estimar a riqueza de Angiospermas a partir das três famílias botânicas mais expressivas em número de espécies na flora brasileira. Foram selecionadas as famílias Fabaceae, Orchidaceae e Asteraceae, adotando-se como unidade observacional os estados da federação e o Distrito Federal, conforme informações da Lista de Espécies da Flora do Brasil. Os dados foram analisados por meio de modelos de regressão simples e múltipla, tomando-se como variável dependente a riqueza de plantas angiospermas e como variáveis independentes a riqueza de espécies das três famílias selecionadas. Para o modelo simples, foi utilizada apenas a família Fabaceae como variável independente. As estimativas apresentaram-se pertinente no contexto dos modelos testados. A família Asteraceae não contribuiu significativamente em um dos modelos múltiplos. Modelos de regressão podem contribuir na identificação de padrões em floras regionais a partir dos dados de riqueza de famílias botânicas, sobressaindo-se os modelos que incluem pelo menos duas famílias.

Palavras-chave: Biodiversidade; Correlação; Regressão.

1. Introdução

A identificação de padrões na flora de uma região é grande interesse das ciências biológicas. Moerman (2013) correlacionou a riqueza de famílias da flora norte-americana com a flora global, obtendo resultados interessantes sobre padrões florísticos, encontrando uma correlação positiva relevante, r= 0,8098. Isto indica que as floras global e continental, embora com significativas diferenças em tamanho, são proporcionalmente semelhantes em riqueza de espécies por família, sendo válidos estudos abrangendo outras regiões. As famílias Fabaceae (2.754)

sp.), Orchidaceae (2.449 sp.) e Asteraceae (2.053 sp.), por exemplo, são as mais expressivas na flora brasileira e lideram ranking da flora global (Moerman, 2013), porém em ordem diferente, Asteraceae (32.006 sp.), Orchidaceae (27.950 sp.) e Fabaceae (26.423 sp.). O presente trabalho difere-se do realizado por Moerman (2013), atentando-se para a correlação entre as famílias e a riqueza total de Angiospermas na Flora do Brasil. O objetivo foi ajustar três modelos de regressão para estimar a riqueza de Angiospermas a partir das três famílias botânicas mais expressivas em riqueza de espécies da Flora do Brasil.

2. Material e Métodos

Os dados foram obtidos na Lista de Espécies da Flora do Brasil (Forzza et al., 2010), regularmente atualizada desde sua publicação em 2012 (Tabela 1).

TABELA 1 - Riqueza de plantas Angiospermas e das famílias Fabaceae, Orchidaceae e Asteraceae

para cada unidade federativa brasileira.

Estado	ANG	FAB	ORC	AST	Estado	ANG	FAB	ORC	AST
Acre	3946	296	87	69	Paraíba	1652	177	57	53
Alagoas	1520	144	66	34	Paraná	5717	364	584	572
Amapá	2462	200	132	40	Pernambuco	2910	286	180	98
Amazonas	7936	696	464	117	Piauí	1736	260	10	63
Bahia	8495	765	423	494	Rio de Janeiro	7187	391	796	404
Ceará	2248	258	62	79	Rio Grande do Norte	1014	123	11	37
Distrito Federal	3036	293	226	290	Rio Grande do Sul	4102	267	356	531
Espírito Santo	4639	274	480	163	Rondônia	2877	255	123	58
Goiás	5309	552	226	463	Roraima	2609	212	248	41
Maranhão	2689	291	128	71	Santa Catarina	4563	242	467	486
Mato Grosso	5151	436	285	266	São Paulo	7400	434	771	651
Mato Grosso do Sul	3323	376	67	236	Sergipe	1210	105	64	37
Minas Gerais	10808	796	831	985	Tocantins	1799	164	99	85
Pará	6009	591	407	112					

ANG: Angiospermas; FAB: Fabaceae; ORC: Orquidaceae; AST: Asteraceae.

Fonte: Lista de Espécies da Flora do Brasil (2014).

Os estados da federação e o Distrito Federal foram tomados como unidades observacionais. Foram selecionadas as famílias Fabaceae, Orchidaceae e Asteraceae, por liderarem o *ranking* da flora brasileira, pois têm mais de 50% de endemismo e são expressivas em todos os estados. É importante ressaltar que a listagem reflete a variação na intensidade de coletas nas diferentes regiões do país. O que se espera é verificar se as proporções de espécies de cada família tendem a manter um padrão regional de composição florística, e, consequentemente, correlacionam-se com a riqueza de Angiospermas. Os dados foram analisados por meio de um modelo de regressão simples e dois múltiplos (Tabela 2), adotando-se para as análises um valor de α = 0,01.

TABELA 2 - Modelos de regressão testados

	Modelos
1	$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
П	$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + \varepsilon_{i}$
Ш	$Y_i = \beta_0 * X_{1i}^{\beta_1} * X_{2i}^{\beta_2} * X_{3i}^{\beta_3} * \varepsilon_i$

Em que: Y_i = riqueza de Angiospermas; X_{1i} = riqueza da família Fabaceae; X_{2i} = riqueza da família Orchidaceae; X_{3i} = riqueza da família Asteraceae

Tomou-se como variável dependente a riqueza de plantas angiospermas e como variáveis independentes a riqueza das três famílias selecionadas. Para o modelo simples, foi utilizada apenas Fabaceae como variável independente, por ser a primeira da lista. Foram testados três modelos. Os coeficientes dos modelos foram estimados pelo método dos mínimos quadrados, conforme Silva e Silva (1982). As avaliações sobre dos modelos tomaram em conta o Coeficiente de Determinação Ajustado, o Coeficiente de Variação e a análise da distribuição dos resíduos.

3. Resultados e Discussão

O modelo I foi ajustado, obtendo-se o valor de b₁₌ 12,0950. O valor de F foi altamente significativo, inferindo-se assim que a diversidade de espécies da família Fabaceae relaciona-se proporcionalmente nas estimativas de angiospermas no modelo testado. Conforme o coeficiente de determinação, o Modelo I explicada 82,32% das variações observadas para a riqueza de Angiospermas, havendo uma correlação positiva de 90,73% entre as variáveis em questão.

A equação ajustada para o referido modelo é: \hat{Y} = 0,1824 + 12,0950 X_{1i} . Para o Modelo II, o valor de F foi altamente significativo (F=434,2387) e o coeficiente de determinação calculado permite inferir que 98,27% das variações da riqueza em Angiospermas são explicadas pelo modelo. Analisando-se a matriz de correlação, destaca-se que Fabaceae sobressai em relação às demais famílias. A equação ajustada é: \hat{Y} =0,0683 + 7,7823 X_1 + 4,8681 X_2 + 0,4516 X_3 .

Quanto ao Modelo III, o mesmo apresentou valor de F altamente significativo (239,7329). Conforme avaliação do coeficiente de determinação, o modelo explica 96,90% das variações na riqueza de Angiospermas. A equação ajustada é: $\ln \hat{Y}_{i=} \ln 2,8504 + 0,6741 \ln X_{1i} + 0,2237 \ln X_{21} + 0,0639 \ln X_{3i}$.

Considerando apenas o Modelo II, observa-se que a família Asteraceae não contribuiu significativamente, sugerindo-se a sua não inclusão na equação. No Modelo III, as três famílias apresentaram contribuições significativas. Por dispensar

uma família, o Modelo II permite a diminuição no esforço de obtenção de dados para as estimativas da riqueza de Angiospermas.

Os três modelos apresentaram valores diferentes de coeficiente de determinação, sobressaindo-se o Modelo II, uma vez que obteve maior coeficiente de determinação ajustado (R²= 98,04%). Para o Modelo I (Figura 1. A), observa-se heterogeneidade da variância, sendo que a variabilidade dos resíduos amplia-se quando aumenta o valor estimado da variável dependente. Para os Modelos II e III (Figura 1 B e C), ambos apresentando um valor extremo, observam-se uma menor heterogeneidade da variância, porém menos acentuada no modelo II. O Modelo III apresentou menor coeficiente de variação (CV=1,4434%), seguido do Modelo II (CV=8,482%).

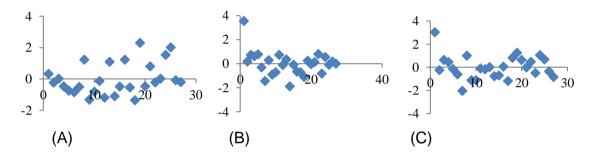


FIGURA 1 - Distribuição dos resíduos para os modelos testados. A: Modelo I; B: Modelo II; C: Modelo III.

4. Conclusão

Modelos de regressão podem contribuir na identificação de padrões em floras regionais a partir dos dados de riqueza de famílias botânicas. Considerando o coeficiente de determinação, coeficiente de variação e avaliação dos resíduos, o Modelo II destacou-se, sendo o mais recomendado dentre os demais. As estimativas de riqueza de Angiospermas a partir das famílias mais expressivas na flora brasileira apresentaram-se pertinente no contexto dos modelos testados. No entanto há uma limitação quanto à inclusão dos táxons, conforme o caso e modelo, conforme ocorreu com a família Asteraceae, que não significativa no Modelo II, apesar de sua expressividade na flora em questão. As famílias Fabaceae e Orchidaceae contribuem significativamente na riqueza de espécies Angiospermas do Brasil, mas os dados devem ser relativizados quando na análise em escalas diferentes do presente trabalho. Em estudos locais seria importante a identificação das famílias mais expressivas na região em análise.

5. Referências bibliográficas

FORZZA, R.C. et al. **Lista de espécies da flora do Brasil.** Rio de Janeiro: Jardim Botânico do Rio de Janeiro, 2010. Disponível em: http://floradobrasil.jbrj.gov.br/2010. Acesso em: 03 jul. 2014. MOERMAN, D. E. The Global Flora; Descriptive statistics with a commentary, and an ethnobotanical example. **Ethnobotany Research & Applications**, v.11, p.109-119, 2013. Disponível em: <a href="http://lib-http://lib-spi.ca:8114/index.php/era/article/viewFile/868/509. Acesso em: 03 jul. 2014. SILVA, J.A.A.; SILVA, I.P. **Estatística experimental aplicada à Ciência Florestal.** Recife: Imprensa da UFRPE, 1982. 292 p.